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ABSTRACT 

 

Survey data underlie most empirical work in economics, yet economists typically have little familiarity 

with survey sample design and its effects on inference.   This paper describes how sample designs depart from the 

simple random sampling model implicit in most econometrics textbooks, points out where the effects of this 

departure are likely to be greatest, and describes the relationship between design-based estimators developed by 

survey statisticians and related econometric methods for regression.  Its intent is to provide empirical economists 

with enough background in survey methods to make informed use of design-based estimators.  It emphasizes 

surveys of households (the source of most public-use files), but also considers how surveys of businesses differ.  

Examples from the National Longitudinal Survey of Youth of 1979 and the Current Population Survey illustrate 

practical aspects of design-based estimation.   
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1. Introduction 

 Survey data are used in most empirical work in economics, but economists typically have not 

considered survey sampling methods to be relevant to their analyses.  This has begun to change as general 

purpose statistical packages have added estimators intended for use with complex samples, and as the 

variables needed to account for the effects of sample design have become more widely available.  Yet 

economists’ use of survey data continues to be hampered by a lack of familiarity with sample design and 

design-based inference methods.    This paper describes how survey data depart from the simple random 

sampling model implicit in most econometrics textbooks, points out where the benefits of accounting for 

this departure are likely to be greatest, and describes the relationship between design-based estimators and 

related econometric methods for regression.1  In short, this paper is an economist’s primer on survey 

samples.   

A primer is needed because failure to account for how survey data are collected can, in some 

cases, lead standard econometric procedures to be seriously misleading.  The effects of survey design are 

best illustrated with an empirical example.  Table 1 presents a simple example of a human capital 

earnings function that relates individuals’ earnings to factors such as education, age, sex, and race.  Here 

we apply the model to data from the March 1997 Current Population Survey.  The dependent variable is 

the log of hourly earnings, and the explanatory variables include years of schooling, age, and dummy 

variables for being black, Hispanic, or female.  Column (1) of the table presents unweighted estimates of 

the model coefficients and standard errors based on the assumption of identically and independently 

distributed (IID) error terms.   The results in column (1) indicate that blacks’ wages are approximately 6% 

(e-.063-1) lower than the wages of whites with similar characteristics.   Although it includes fewer right-

hand side variables than does most of the earnings regression literature, column (1) follows most of that 

literature in ignoring the sample design. 

                                                                 
1 Deaton (1997) provides an excellent review of some of the material covered in this article, with emphasis on 
design issues and techniques relevant to work using data collected in developing countries.  The treatment here 
differs from Deaton’s in being shorter and in emphasizing designs common to data produced by U.S. statistical 
organizations. 
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Column (2) of Table 1 presents estimates from the same model, but in that column the estimation 

procedure has explicitly accounted for the way in which the CPS data were collected.  Some of the results 

are substantively unchanged, as the coefficients on education, age, and the female dummy change only 

slightly across the two specifications.  The point estimate of the black/white wage differential changed 

substantially across the specifications, however, and each of the standard errors increased somewhat.  The 

combined effect of the two changes was that the 95% confidence interval for the black coefficient is (-

.090,-.036) for column 1 and (-.135, -.069) for column 2.  The coefficient and confidence interval for the 

Hispanic dummy variable was similarly affected by the move to design-based estimation.  These changes 

could obviously affect the results of statistical tests and other inference procedures. 

Precisely what does it mean to “account for the survey design” in column (2)?  Why did 

accounting for the survey design affect the inferences drawn from these data?  Why were inferences for 

some parameters affected by the design while others were not?  And finally, which set of estimates should 

an economist prefer?  The answers to these and related questions are the subject of this paper.  The paper 

describes design features common to surveys of households because most public -use data comes from 

such surveys, but also considers how surveys of businesses differ.  The paper emphasizes linear 

regression, and it uses examples drawn from the National Longitudinal Survey of Youth of 1979 

(NLSY79) and the Current Population Survey (CPS) to illustrate practical aspects of design-based 

estimation.  We hope that the paper will enable the reader to be a more sophisticated consumer of survey 

data and, in turn, to make more accurate inferences from survey data. 

 
 
2.  Sample Design Basics 
 
 Survey samples are designed with specific goals in mind.  The first goal of most surveys is to 

measure with reasonable accuracy the unconditional means or totals of key variables, or changes in these 

means or totals across time.  For example, the monthly Current Population Survey (CPS) measures the 

national unemployment rate, and the Consumer Expenditure Survey (CEX) measures average spending 

patterns.  The second goal of most surveys is to measure means for certain subgroups.  For example, the 
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CPS measures the unemployment rate separately for each state, and the National Longitudinal Survey of 

Youth (NLSY) measures the labor market activity of black and white youth.  These goals involve 

estimating means or related quantities that describe an existing finite population (for example, the current 

U.S. population).  This is in contrast with a more typical goal for an economist: characterizing the 

underlying, often multivariate, behavioral relationship that generated the existing finite population.   The 

divergent goals of survey designers and econometricians have led surveys to depart from the standard 

econometric sampling framework in several ways. 

To fix ideas, suppose that a sample of size n of values of the variable Y is drawn from a finite 

population of size N.  Typically n is much smaller than N and we will assume this to be the case 

throughout the paper.  The most conceptually straightforward method of selecting a sample is simple 

random sampling (SRS), which is simply the urn model familiar from econometrics textbooks.   SRS 

consists of a series of independent random draws, where each draw gives an equal chance of selection to 

all members of the population. 2  While SRS simplifies data analysis, it is rarely an optimal sample design 

given the survey goals described above.  Instead, sample design trades off the costs of various design 

techniques against their effects on the precision of key statistics, leading to quite complex designs for 

most surveys.   

While the details vary, most designs combine three basic features: stratification, clustering, and 

varying probabilities of selection.  The following subsections describe these features and explain why 

they are used.   Because design features’ effects on simple statistics are most relevant to how and why 

they are used, the description in this section emphasizes estimators of means and totals.  Section 3 gives a 

more detailed discussion of the effects of design on regression—a topic of central interest to economists, 

but usually a side issue to those designing (and funding) surveys. 
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2.1  Stratification 

 SRS may be an appropriate strategy when little is known about the population prior to the survey.  

In most cases, however, there is some ex ante  information about the distribution of Y across subgroups or 

strata of the population identified by auxiliary variables.  Stratification  entails choosing independent 

subsamples of predetermined size from each stratum, thereby reducing sampling variation.  The basic idea 

is that sampling variability of a sample mean can be divided into a) sampling variation within strata and 

b) sampling variation in each stratum’s sample share.  By fixing each stratum’s sample share, 

stratification eliminates sampling variation due to this latter between-stratum component. If the strata 

have very different means for Y because the auxiliary variables used to define strata are highly correlated 

with Y, then stratification can increase precision substantially. If the strata are very similar to one another, 

however, then this procedure reduces sampling variance only slightly.3  Thus, the ideal stratification 

scheme creates strata that are internally homogeneous and externally heterogeneous. 

The effectiveness of stratification is limited by the type of information available prior to the 

survey.  For example, a household income survey might wish to stratify on age, race, and sex because 

income is known to vary with these variables.  There is no general list of households belonging to groups 

defined by those variables, however, so they cannot be used to directly define strata.  To achieve similar 

results, sample designers often stratify the target population using averages for geographic areas to 

approximate the desired demographic stratification scheme.  As an example, a survey for a city with equal 

shares of blacks and whites might sort neighborhoods into two strata based on whether the majority of 

residents are black or white.  With a moderate degree of neighborhood segregation, the result might be 

one stratum with 70% black residents and the other with 70% white. The desired sample shares of each 

                                                                                                                                                                                                                 
2 This describes SRS with replacement, but most surveys sample without replacement.  Given that sample sizes are 
typically very small relative to the sizes of their target population, this distinction can usually be ignored.  We will 
use SRS as a short hand for SRS with replacement.  
3Often, different probabilities of selection are applied to elements in different strata, so stratification and varying 
probabilities of selection (the topic of section 2.2) are implemented together.  Our description of the effects of 
stratification on precision applies when the same probability of selection is applied to each stratum.  This isolates the 
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race can then be closely controlled through independent samples from each stratum. Though not as 

effective as direct stratification of households, such stratification of geographic areas is practical and 

widely used.  Column 2 of Table 2 gives some examples.  Samples for business surveys are usually 

selected from a list of establishments that has information on characteristics such as industry, location, 

and firm size for individual sampling units, so these characteristics are typically used as stratification 

variables.  As Table 2 illustrates, business surveys are usually stratified by industry, and often by some 

measure of size as well. 

 

2.2 Unequal probabilities of selection 

 An important feature of SRS is that it assigns the same probability of selection to each population 

element.  Stratified samples can also use constant probabilities of selection—a technique known as 

proportional allocation.  But in many cases varying the selection probabilities allows a survey to better 

achieve its goals.  One reason for doing so is that it is easier to collect data from some members of the 

population than others.  For example, face-to-face interviews are cheaper in the city than in the country.4  

Cost minimization subject to achieving a set level of precision will lead the sample designer to include 

urban households in the sample with higher probability than rural households.   

A second reason for varying probabilities of selection is that a survey may need separate 

estimates for subpopulations of unequal size.  For example, surveys such as the CPS that are designed to 

produce state estimates typically use higher rates of selection in states with small populations such as 

Alaska or Wyoming than in very populous states such as New York or California.  A closely related third 

reason is that a survey’s goal may be to compare subpopulations.  If one group is smaller than the other, 

sampling the smaller group at a relatively high rate reduces the variance of the estimated difference. This 

                                                                                                                                                                                                                 
effect of choosing separate samples from each stratum (which defines stratification) from the effects of varying 
probabilities of selection.   
4 Deaton (1997, p. 12) points out that this is particularly true of surveys in third-world countries, where 
transportation and communication is much more costly in the hinterland than in the cities. 



 8

is one reason that many household surveys use higher rates of selection for black, Hispanic, or low-

income families than for other families, as illustrated in the column (2) of Table 2.   

A fourth reason for varying probabilities of selection is that some population elements are more 

informative than others.  In business surveys in particular it is common to use probability-proportional-

to-size sampling in which an element’s probability of selection is set proportional to some measure of size 

such as a business’s amount of sales or number of employees.  This is illustrated in column 2, panel B of 

Table 2.  Higher probabilities of selection reflect the greater importance of large businesses to aggregate 

measures such as GDP or to any variable that is measured per employee (e.g., rates of health insurance 

coverage).   

Using estimators based on the assumption of SRS may result in biases if varying probabilities of 

selection are correlated with the target measure Y.5  Survey weights are designed to allow the analyst to 

avoid such biases in making inferences about finite population parameters such as ∑
=

=
N

i
iY

N
Y

1

1
.  Define 

π i as the probability that element i is selected for the sample, which is a probability controlled by the 

sample designer. The basic sampling weight wi is simply the inverse of this probability:  

 
i

iw
π
1

= .       (1) 

Often, wi can be thought of as the number of finite population elements that sample observation i is 

intended to represent. 

 Equation (1) indicates that weights are based on parameters set by the sample design.  In practice, 

however, survey weights are typically adjusted in two ways after the data have been collected.  The first 

adjustment compensates for varying probabilities of response by shifting the weight of nonrespondents to 

observationally similar respondents.6  Almost all surveys, even those designed to have equal probabilities 

                                                                 
5 For example, (unweighted) sample mean income from the NLSY, which sampled blacks, Hispanics, and low-
income whites at much higher rates  than other whites, is likely to underestimate true population mean income. 
6 Item nonresponse is a closely related problem that occurs when respondents answer some questions but not others.  
Surveys typically deal with this problem by “allocating” or “imputing” to nonrespondents the answers of otherwise-
similar respondents who answered the particular question.  For calculating means, this is a reasonable way of 
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of selection, make some such nonresponse adjustment to the survey weights.  Nonresponse adjustments 

are implicitly based on a model of the determinants of response, and the model is necessarily limited to 

dependence on measures that are available for both nonrespondents and respondents.  Column (3) of 

Table 2 lists the variables used in the nonresponse models of our example surveys. 

The second adjustment to the survey weights, known as post-stratification, adjusts the weights to 

make weighted sample moments equal finite population moments that are known with a high degree of 

accuracy (perhaps from a much larger survey or from administrative records).  For example, it is common 

for surveys of persons to adjust weights to make sample estimates match counts of the population by age, 

race, and sex from the decennial census of population.  Column (4) of Table 2 lists the variables used for 

post-stratification in our example surveys.  These variables are typically similar to the variables used to 

define the original stratification scheme.  Post-stratification reduces the variance of estimates in much the 

way (pre-)stratification does; it is effective if the auxiliary variables used to post-stratify are highly 

correlated with the target variable.7  An important difference between the two is that, under mild 

conditions, stratification at worst has no effect on precision, whereas post-stratification can reduce 

precision if it is based on variables not correlated with the variable of interest.  This is of particular 

concern when using survey data for purposes very different from those that motivated the choice of 

poststratification variables.  

 

2.3 Clustering 

SRS involves independent selection of each sample element.  However, collecting data from 

population elements that are close together is often considerably less costly than collecting data from 

elements chosen independently.  In such cases, selecting groups of close elements (known as clusters) 

                                                                                                                                                                                                                 
making nonresponse adjustments on a question-by-question basis.  Common imputation methods have much less 
innocuous effects on regression coefficients, however, which is one reason why analysts often delete observations 
with imputed data from their analysis.  Most surveys in the U.S. have substantial rates of nonresponse for at least 
some questions.  See Lillard, Smith, and Welch (1986) and Little and Rubin (1987) for further discussion.  
7 Post-stratification is often implemented using raking,  which iteratively adjusts weights to reconcile post-
stratification to moments of the marginal distributions of several variables.  For example, a survey might use raking 
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reduces per-element collection costs, and thereby allows for a larger sample size than would SRS, holding 

costs fixed. This is particularly true in face-to-face surveys for which interviewer travel time accounts for 

a large share of collection costs, and so face-to-face surveys of households virtually always use clustered 

samples.  Column (5) of Table 2 lists the variables used to define cluster in our example surveys.  For 

household surveys, counties, groups of counties, or MSAs are most often used at the initial stage of 

clustering, and blocks or groups of blocks are often used at the second stage of clustering.  Business 

surveys are rarely explicitly clustered, but analysis of elements at levels below the business as a whole 

(e.g., business units, plants, or employees) are implicitly clustered, since employees from a single 

business were selected for the sample at the same time. 

Although clustering reduces survey costs per element, the value of a target variable may be 

correlated across elements belonging to the same cluster.  For example, the incomes of two randomly 

selected families from the same neighborhood are more alike on average than the incomes of two families 

selected independently from the U.S. as a whole.  Such within-cluster correlation reduces the precision of 

estimators relative to what could be obtained from an SRS sample of the same size because two selections 

from the same cluster provide less information than two independent selections.  If clusters are composed 

of identical elements—in which case selecting more than one element from a cluster yields no additional 

information—then the sample size is effectively the number of clusters and collecting data from more 

than one cluster member simply wastes resources.  If instead each cluster is effectively a simple random 

sample of the population at large, then a clustered sample would be just as informative as a simple 

random sample of the same size.   

While data collection methods determine the relationship between survey costs and the 

geographic dispersion of sample elements, defining clusters is part of the sample design. The ideal 

clustering scheme creates clusters that are spatially compact (thereby minimizing survey collection costs) 

                                                                                                                                                                                                                 
to post-stratify to population by age group and population by level of education (when population by age group by 
level of education is not known with great precision).   
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but internally heterogeneous (thereby maximizing the information captured in each element).8  A fairly 

typical design for a large U.S. household survey would use two levels of clustering: divide the area of the 

U.S. into counties or small groups of counties and choose a sample of those clusters;9 then subdivide each 

sampled area into much smaller units (perhaps a city block), and choose a sample of those units; 

individual elements (households) are then selected randomly from the second-stage units.  Counties are 

often chosen as first-stage clusters because for many variables they are internally fairly heterogeneous 

while being compact enough to realize much of the cost savings from reducing the geographic dispersion 

of data collection.  

 

3. Regression Coefficients and Survey Weights 

 The previous section described the components of sample design in terms of the estimation 

problems that typically motivate the choice of design—estimation of means or totals. Yet economists 

more often use survey data for multivariate analyses, so the effects of sample design on regression and 

related estimators are of more fundamental concern for economic analyses.  This section examines the 

consequences of varying probabilities of selection for the OLS coefficient estimator, and considers when 

using survey weights will improve its properties.  The consequences of stratified and clustered samples 

are considered in sections 4 and 5, where we take up the issue of variance estimation.   

 

3.1   Differences in Approach 

 Before considering the effects of sample design it is helpful to point out differences between the 

finite population approach to regression taken by survey statisticians and the modeling approach that 

underlies most econometric analyses.  To understand the different approaches, it is important to keep in 

                                                                 
8 Note the distinction here between clusters and strata.  Because stratification ensures that each stratum is 
represented in the survey, its benefits are greatest when the strata are quite different from one another, and so are 
internally relatively homogeneous.  In contrast, it is advantageous that clusters be internally heterogeneous, and 
consequently that different clusters within a stratum be somewhat similar to each other.  If this is not true, then the 
fact that clusters are selected rather than individual elements will substantially increase variance. 
9 These first-stage clusters are often referred to as primary sampling units (PSUs). 
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mind that there are two random processes involved in economic survey data.  First, a data-generating 

process produces population elements such as individuals, firms, or countries in a manner that may or 

may not be independent and identically distributed (IID).  These population elements constitute the finite 

population.  Second, a sampling process produces the sample from the finite population.  The manner in 

which finite population elements are selected for the sample may or may not be SRS.  A key difference 

between the two disciplines is that econometricians focus on the vagaries of the data-generating process, 

while survey statisticians focus on the sampling process. 

 Consider the multiple regression model: 

  Y = Xβ + εε         (2) 

where X has full column rank k , E(εε |X)=0, and IE 2)|( óXåå =′ .  We will think of (2) as a data-

generating process that could potentially produce an infinite number of observations.  The finite 

population is viewed as a sample of size N produced by this process, and the survey sample is in turn 

drawn from the finite population.  If SRS is used to select a survey sample, then the properties of the data-

generating process also apply to the sampled data.  But under more complex designs the joint distribution 

of sample values becomes more complicated. We will use lower-case letters to denote sample values, 

upper-case letters to refer to random variables more generally, and the subscript N to denote finite 

population values.   

 The classical statistics problem is to make inferences about β.  In contrast, the sampling literature 

frequently defines the parameter of interest as the finite-population quantity: 

  )()( '1'
NNNN YXXX −=Β .      (3) 

That is, the quantity of interest is the vector that would be obtained by applying least squares to the entire 

finite population. Note that (3) exists whether or not the finite population is generated by the mechanism 

in (2), though its interpretation and interest may depend on the accuracy of the model.  

 If B is the parameter of interest, then an estimator’s properties are evaluated by taking 

expectations over all possible samples that could be drawn from the finite population, with relevant 
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probabilities determined by the sample design.  We will refer to this as taking expectations with respect to 

the design (EDesign{ . }).  Economists would more typically evaluate the properties of an estimator of β 

(rather than B) by taking expectations over all possible outcomes of a particular data-generating process, 

under the assumption that each sample element is a random draw from that process.  We will refer to this 

as taking expectations with respect to the model (EModel{ . }).   

 Note that taking expectations with respect to the design yields a function of finite population 

quantities that can be thought of as outcomes of the data-generating mechanism.  These two approaches 

can be combined by taking expectations first with respect to the design (but assuming that the finite 

population was generated by a process described by the model), and then with respect to the model—that 

is EModel(EDesign( . |model assumptions)).  Doing so allows consideration of how the sample design affects 

estimator behavior under a particular set of assumptions about the data generating mechanism. 

 

3.2 OLS with Unequal Selection Probabilities 

 Under SRS, the classical estimator of both β in (2) and B in (3) is the ordinary least squares 

(OLS) estimator  

  ,')'(ˆ 1 yxxxOLS
−=β       (4) 

where lower-case letters denote sample values.  For samples with varying probabilities of selection, 

survey statisticians would typically recommend use of the weighted least squares (WLS) estimator: 

  wyxwxxwgt ')'(ˆ 1−=β       (5) 

where w is a diagonal matrix of survey weights.  What should guide an economist’s choice between the 

two estimators?  Note that the econometric argument for WLS is usually based on heteroscedasticity 

which is assumed away in (2), so any preference for WLS must be driven by other factors.  Here, instead, 

the argument for WLS is that varying probabilities of selection may lead the relationship between the 

dependent variable and regressors in the sampling distribution to differ from the relationship in the finite 
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population.  If the sample and population relationships differ, the consistency of OLS will depend on how 

the sample was selected.  Because it uses sample weights that are inversely proportional to a sample 

element’s probability of selection, WGTβ̂  converges to the finite population relationship B even in cases 

where OLSβ̂  does not. The rest of this subsection is devoted to making this point more precisely.    

 Taking expectations with respect to the design under (2), gives 

NNNNNNnDesignOLSDesign XXXxxxEE εππεββ '1'1 )()}){(}ˆ{ −
∞→

−  →′′=− ,  (6) 

where Nπ denotes a diagonal matrix with probabilities of selection along the diagonal, and Nε  is the 

finite-population matrix of error terms.   Taking the expectation of (6) with respect to the model, 

}){( '1'
NNNNNNModel XXXE εππ − will converge to zero provided that 1' )(lim −

∞→
NNN

N
XX π  exists, and 

.0)(
1

1  →
∞→

=

− ∑ Ni

N

i
iiModel XNE επ   This latter condition will hold if the data-generating process is such 

that the product of the sampling probability and the error term is on average zero for every value of X: 

.0)|( =XEModel πε  With constant probabilities of selection, this reduces to the more familiar condition 

EModel(εε |X)=0.  However, this condition is not sufficient to ensure that the OLS estimator is consistent 

when probabilities of selection vary. 

 If probabilities of selection  (π) are correlated with εε , then the mean of the error term’s sampling 

distribution will not equal zero for all X.  As should be familiar from the econometric literature, this leads 

to inconsistent slope coefficient estimates if the mean of εε  (in the sampling distribution) is correlated with 

X.  Thus, consistency of OLS applied to a complex sample not only requires that (2) be correctly 

specified, but also that the product πεε  be uncorrelated with X.   

 When is this second condition likely to hold?  For many sample designs, probabilities of selection 

can be expressed as a linear function of design variables D:  π i = diτ. 10   For example, D includes stratum 

                                                                 
10 πi will be a linear function of design variables if sampling probabilities are constant within a stratum, or are 
proportional to some measure of size.  Note, however, that probabilities of response may be non-linear functions of 
these variables or functions of variables not included in D.  Other factors, such as imperfections in the information 
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identifiers if probabilities of selection vary across strata, and includes measures of size if probability-

proportional-to-size sampling is used.  In some cases, D also includes Y.  For example, a survey might 

oversample low-income families, in which case the dependent variable from an earnings regression would 

also be a design variable. 

 If X includes all columns of D, then π is constant conditional on X, and there is arguably no 

reason to prefer wgtβ̂ to OLSβ̂ .  If, in addition, (2) is known to be correctly specified, then OLSβ̂  is the 

minimum-variance linear unbiased estimator and so would be preferred to wgtβ̂ .   However, only rarely 

would all elements of D be included in X.  For example, in many household surveys probabilities of 

selection vary across geographic areas.  Geographic identifiers may not be included in X either because 

doing so would be inappropriate for the analysis, or because the relevant geographic detail is not 

identified in public use files.  In cases in which D includes the model’s dependent variable, clearly it is 

not possible to simply include D as a regressor.11  Thus, the conditions under which OLSβ̂ is strictly 

preferred to wgtβ̂ are not often met when using survey data. 

 

3.3  Advantages of Weighting 

 If X does not include all of D, and so π i varies across members of the population with the same 

set of X’s, then πεε  could be correlated with X.  Consistency of OLSβ̂  then rests on the assumption that πεε  

is uncorrelated with X.12  If  there were great certainty about the adequacy of the model—that is, that 

conditional on X all variation in Y were purely the result of white noise shocks—then there would be 

little reason to suppose that the selection probabilities and the error term were correlated.   But more 

                                                                                                                                                                                                                 
used to design the sample, may also mean that simply including design variables as regressors will not guarantee 
consistency of OLS. 
11 In this case the sample design produces a form of selection bias.  Hausman and Wise (1981) and Wooldridge 
(1998, 1999) consider this case. 
12 A more intuitive, but more restrictive condition, is that 0),|( =πε XEModel , or, yet more restrictive, 

0),|( =DXEModel ε . 
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realistically there is always some uncertainty about the specification, in which case wgtβ̂  may be 

preferred because it has a smaller bias than OLSβ̂  when the model is misspecified.   

 The argument that wgtβ̂  has advantages over OLSβ̂  is best illustrated using a particular type of 

misspecification.  Suppose that (2) omits relevant variables Z, so the correctly specified model is:  

  Y = Xβz + Zγ + ν.        (6) 

Neither OLS nor WLS will be consistent for Zβ  when applied to (2), except under restrictive conditions.   

Obviously the ideal solution would be to include z in the regression, but we will assume that z is 

unavailable, as is often the case in economic survey data. 

 Since we cannot estimate Zβ , suppose that instead we take as our parameter of 

interest γββ ** TZ += , where }){(lim 1*
NNNN

N
ZXXXT ′′= −

∞→
.  That is, we cannot avoid attributing 

some of the effects of Z to X, but we want our estimates to reflect how those variables relate to each other 

under the mechanism that generated the finite population.13  Kott (1991) shows that EModel{EDesign{ OLSβ̂ }} 

converges to *β  only if π  is uncorrelated with the components of Z that are orthogonal to X.  In 

contrast, EModel{ }ˆ{ wgtDesignE β } converges to *β regardless of the structure of the π ’s.  In this sense, 

wgtβ̂ is more robust than OLSβ̂ .  Thus the prime argument for using wgtβ̂ is that it consistently estimates a 

well-defined quantity (Β or *β ) even when the model is misspecified, whereas OLSβ̂  estimates a well-

defined quantity only under more restrictive conditions.  The primary cost of using wgtβ̂ is that it has 

greater variance than OLSβ̂ .  In general, )ˆ( wgtV β  increases as the variance of weights increases and as the 

sample size decreases (Pfefferman 1996).14 

                                                                 
13 This sort of compromise is prevalent in the econometrics literature on returns to education (e.g., Freeman, 1986), 
to take just one example.  
14 A secondary cost is that some standard inference procedures are unavailable when using the weighted estimator—
for example likelihood ratio tests and use of residuals to check the fit of a model  (Pfeffermann 1996) 
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 The effects of weighting when controlling for design variables are illustrated in Table 3, which 

revisits the human capital earnings function of Table 1.  The first two columns of Table 3 reproduce 

coefficients of Table 1, and they again show that weighting affects some variables but not others.  In 

particular, the negative coefficients on the black and Hispanic dummy variables are significantly larger in 

absolute value when the weighted estimates are used, whereas the coefficients on age, years of schooling, 

and the female dummy are largely unaffected by the weighting.  The CPS sample design is the cause of 

this pattern.  In particular, because it is used to estimate state unemployment rates, the CPS design selects 

households in small states with higher probabilities than households in large states.  Many of these less 

populous states are primarily non-urban, while also having populations that are disproportionately non-

black and non-Hispanic and which have lower-than-average earnings for given characteristics (i.e. ε <0 

for many of these states).  Thus, the unweighted CPS tends to overrepresent low-earning whites, but not 

low-earning blacks or Hispanics.  As a result, the unweighted black-white and Hispanic-non-Hispanic 

comparisons of column (1) are inaccurately close to zero.  In contrast, the overrepresentation of small 

states in the CPS has only modest effects on the coefficients on age, schooling, and sex.  The reason is 

that there is much less cross-state variation in the population along these dimensions (although there is 

some). 

 Columns (3) and (4) of Table 3 reproduce the analyses of the first two columns, with the 

exception that state dummy variables are included as regressors.  Recall again that most of the cross-

household variation in the probability of selection in the CPS is across state.  Thus, the state dummies are 

the primary design variables in D.15 The columns show that the effect of weighting is much smaller when 

these design variables are included on the right-hand side.  This is not to suggest that design variables 

should always be included as right-hand side variables, as in many contexts (perhaps including this one) 

the relationships of interest do not warrant their inclusion.  Rather, the point is merely that the effects of 

                                                                 
15 State dummies explain 87% of the variation in the sampling weights in the CPS, where the “sampling weight” is 
the weight without any nonresponse or poststratification adjustment.  State dummies explain 61% of the variation in 
the survey weight for the entire sample of persons, and 63% of the variation in the survey weight for our regression 
sample. 
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weighting depend on whether or not the design variables are included as regressors. 

 The argument that wgtβ̂ is more robust than OLSβ̂  assumes that the variation in survey weights 

accurately reflects differences in probabilities of sample inclusion.  In practice, the weights provided may 

do so imperfectly.  For example, nonresponse adjustment is necessarily based on a model, and that model 

may itself be misspecified.  If so, adjusting weights for nonresponse is likely to increase estimator 

variances, and there could be some analyses in which using weights would increase bias rather than 

reduce it.  The need to adjust weights for missing data also arises when analysts impose selection criteria 

of their own—for example dropping observations with missing responses to relevant questions.  The 

correct sample weights would account for this stage of selection as well, and for some analyses the correct 

weights might not be highly correlated with the weights constructed for the survey sample as a whole.16  

Note that these may be strong arguments for tailoring selection adjustments to a particular analysis, but 

not for choosing to ignore the problem.17   

 

3.4  Using Weights to Check for Misspecification   

 Even in cases where an economist is doubtful that wgtβ̂ has properties superior to those of OLSβ̂ , 

the weights themselves may be useful in checking for possible misspecification. Weighted estimates 

differ substantially from unweighted estimates when there are large between-group differences in both 

probabilities of selection and in the relationships represented by the regression coefficients.  With a 

correctly specified model (i.e. one that allows for between-group differences in regression coefficients 

where relationships differ across groups), there should be little difference  between the weighted and 

unweighted coefficient estimates.  When a model fails this check, differences between the two sets of 

estimates are likely due to misspecification that is related to the variables that determine probabilities of 

selection.  Restricting one’s attention to unweighted estimators thus ignores a simple and potentially 

                                                                 
16 This can be particularly problematic in longitudinal surveys (MaCurdy, Mroz and Gritz, 1998). 
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important check on a model’s robustness. 

 DuMouchel and Duncan (1983) propose one method of testing for misspecification using survey 

weights.  They suggest adding to the list of regressors the weights (w) along with interactions between w 

and each variable in x, and then testing for the joint significance of the coefficients on w and its 

interactions.  Rejecting the null that those coefficients are jointly zero is evidence that the model may be 

misspecified.  A statistically significant interaction between w and a component of x may indicate that the 

effects of that component are misspecified.  So, using DuMouchel and Duncan’s example, if a survey 

uses higher sampling probabilities for blacks than whites, and the coefficient on an interaction between w 

and schooling attainment is significant, then this may indicate that the schooling coefficient differs by 

race.18   

 

4. Effects of Sample Design on Conventional Variance Estimators  

 Ignoring varying probabilities of selection may lead to biased coefficient estimates. Stratification 

and clustering, in contrast, do not affect the means of point estimators but can have important effects on 

their variances.  In this section, we consider how these techniques affect the consistency of variance 

estimators that assume SRS.  In section 5 we present alternative methods of variance estimation that take 

the sample design into account.  

 

4.1  Stratification 

 We noted in section 2 that stratification eliminates the contribution of between-stratum 

differences to the variability of estimators of means or totals.  The corresponding result for regression is 

that stratification may reduce )ˆ(βV  by eliminating the contribution of between-stratum differences in the 

                                                                                                                                                                                                                 
17 One alternative might be use of Hellerstein and Imbens’s (1999) method of constructing weights for a particular 
regression analysis using moment restrictions estimated from auxiliary data—essentially a regression-based form of 
post-stratification. 
18 In a similar vein, Wooldridge (1998,1999) derives a Hausman test based on the difference between weighted and 
unweighted estimators which tests for the exogeneity of the sampling probabilities.  See also Fuller (1984) and 
Pfefferman (1993, 1996) for further discussion. 
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mean of the error term.  As a result, ignoring stratification leads, on average, to overestimates of )ˆ(βV .  

Recall, however, that the limited information available ex ante for most surveys means that gains from 

stratification tend to be small even in estimating Y . With regression, variation in X across strata usually 

accounts for some of the variation in Y, so differences across strata in meanε will generally be even 

smaller than differences in mean Y.  Thus, stratification leads to efficiency gains that are typically quite 

small in the regression context, and for this reason, ignoring stratification in the estimation of variances is 

not likely to cause substantial biases.  Nevertheless, accounting for stratification will on average lead to 

lower variance estimates and so is advisable when estimation techniques that account for stratification and 

stratum identifiers are readily available, 

 

4.2 Clustering 

 Clustering can lead to a violation of the assumption that error terms are independently distributed.  

Two elements selected within the same cluster will be more alike along many dimensions than would two 

elements selected independently from the population at large. As is familiar to economists from other 

contexts (e.g., autocorrelated errors, panel data models) positively correlated error terms result in a 

downward bias in conventional estimators of standard errors.  Thus, ignoring clustering can lead to 

seriously misleading inference procedures. The magnitude of this downward bias depends on several 

factors: the correlation between error terms within clusters, the number of elements selected within a 

cluster, and how much the explanatory variables vary within clusters. 

 The effects of clustering can be characterized in terms of the ratio of a) the true variance of an 

estimator (taking the clustering into account) to b) the expectation of the variance estimator actually used.  

This quantity is known as a misspecification effect (meff), and it measures the degree to which variances 

are understated if clustering is ignored.19  To characterize the magnitude of meffs in clustered data, 

suppose that a design involves choosing a SRS of a clusters, and then within each cluster choosing a SRS 
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of bc elements.  The formulae for meffs are most readily interpreted in the special case where the 

correlation among observations in a cluster can be modeled as due to a cluster effect in the error term.  

That is, the error term in Y = Xβ + εε  may be modeled as the sum of two 

components: .0),cov(  where, =+= icciccic uu ννε  Treating the cluster effects (uc) as random implies 

that: 
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These formulae bear an obvious resemblance to random effects models used for panel data, a similarity 

we return to in Section 5.  20 

 Scott and Holt (1982) show that in the case of random cluster effects, the ratio of 

12 )(  to)ˆ( −′XXV σβ  (which is a matrix of meffs) is given by 
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,  Xc is the matrix of explanatory variables 

for cluster c, and 
cb1 is a row vector of 1’s of length bc.  Here cX is a bc by k matrix of cluster means, and 

Λ is thus a function of across-cluster variation in X relative to total variation in X.  In the special case of a 

regression with one regressor and with the same number of elements sampled from each cluster (bc = b), 

the meff for the slope coefficient variance further simplifies to: 

  ερρβ xbmeff ˆ)1(1)ˆ( −+=        (9)  

where xρ̂  is the sample intra-cluster correlation of X.21 

                                                                                                                                                                                                                 
19Meffs are a general tool used to characterize biases in estimating variances for complex sample designs—they are 
not specific to designs with clustering. 
20 Indeed, models of this form have been considered in both the sampling literature (Kott 1991) and the 
econometrics literature (Moulton 1986, 1990). 
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 The random effects model in (7) makes quite restrictive assumptions about the error structure, 

and so meffs based on it will be accurate only when the assumptions hold.  Nevertheless, (8) and (9) 

provide a useful indication of where the variance estimator biases from ignoring clustering are likely to be 

most severe.  For example, conventionally estimated standard errors for the coefficients of geographic 

controls (which usually do not vary at all within cluster and so have 1ˆ =xρ ) will generally have greater 

downward biases than will standard errors for demographic variables such as age.  In addition, 

demographic characteristics with a high degree of geographic segregation (for example, race) generally 

have larger meffs than characteristics more evenly distributed across areas (for example, gender).   

 Equation (9) also illustrates that ignoring the effects of clustering generally leads to larger 

downward biases for the variances of means than for the variances of regression coefficients.  With no 

explanatory variables, (9) simplifies to y0    where)1(1)()ˆ( ρρβ ybymeffmeff −+==  is the intra-

cluster correlation coefficient for Y.  In the worst-case scenario for a regression (no within-cluster 

variation in X), bI=Λ , and conventional variance estimators are biased by a factor ερ)1(1 −+ b .  This 

expression differs from the meff for the sample mean only in that the correlation coefficient is for the 

error term rather than the dependent variable itself.  Meffs for regression estimates tend to be smaller than 

meffs for sample means for two reasons: (i) the within-cluster correlation of residuals will generally be 

smaller than the correlation for the dependent variable itself )( yρρε <  because regressors usually 

control for some within-cluster correlation; (ii) within-cluster variation in the regressors ( 1ˆ <xρ ) also 

means that additional observations from a given cluster are informative even when the error terms are 

highly correlated.   

 Table 4 illustrates the effects of clustering on the estimation of human capital earnings functions 

with data drawn from the CPS and the NLSY79. Column (1) reports the univariate intracluster correlation 

coefficient for each of the explanatory variables in the regression.22  The column shows that there is 

                                                                 
22 For both surveys, the counties (or groups of counties) selected as primary sampling units are used as clusters.  
Both samples have a second stage of clustering, which we ignore here but return to later.  For both surveys, the 
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substantial variation in the extent to which independent variables are correlated within clusters.  In 

household surveys, there is often little within-cluster correlation in variables such as age and sex, as these 

variables are spread about as evenly across primary sampling units as would be predicted by random 

assignment.  In contrast, variables measured at aggregate levels such as the local unemployment rate or a 

state identifier will often be perfectly correlated within clusters.  In between these two extremes lie 

variables such as education or race for which there is substantial but incomplete spatial segregation, and 

thus middling levels of intracluster correlation. 

 The intracluster correlation coefficient of the regression residual ( ερ̂ ) is reported above the list 

of explanatory variables for each survey.  In contrast to the intracluster correlation coefficient for the 

right-hand side variables, this correlation is constant across all variables.  Though ερ̂ is small for both 

surveys, the effects of clustering may not be small because both surveys have a fairly large number of 

observations per cluster (on average 47 persons in the CPS regression sample, and 45 persons in the 

NLSY79 sample).  Columns 2 and 3 report the square roots of two alternative meffs.  (The square root is 

known as a misspecification factor, or meft, which gives the effects of survey design on standard errors 

rather than variances.)  The last column indicates that accurately-estimated standard errors sometimes 

substantially exceed those calculated assuming IID errors.  For example, the misspecification factor for 

the MSA dummy coefficient in the CPS regression is estimated to be 1.24, which suggests that inference 

procedures based on conventional standard errors could be quite misleading.   

 Note that equation (9), which is based on the random effects model, suggests that the 

misspecification effect should be a monotonic function of the intracluster correlation coefficient for 

independent variables in the same regression.  There are two reasons why this monotonicity is not 

observed in the table.  First, column 1 reports the univariate intracluster correlation coefficient for each X, 

                                                                                                                                                                                                                 
sample design involved selection of one PSU per non-certainty stratum.  Design-based variance estimators require a 
minimum of two PSUs per stratum, so non-certainty strata were paired to approximate such a design.  The estimates 
in Table 4 are all unweighted, to facilitate use of the random components model. 
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whereas in the multivariate framework the relevant calculations involve the full matrix Λ .23  This 

accounts for the difference between the results in column 2, and what would be implied by applying 

equation (9).  Second, the reported misspecification effects are based on techniques (discussed in section 

5) that allow for a more general error structure than does the random effects model of (7).  That is, while 

(9) provides useful intuition, it will be accurate only in special cases.       

 Treating clustered samples as if each observation were drawn independently has much the same 

effect as treating panel data as if it were a series of independent cross sections: in most cases the variance 

estimator will have a downward bias.  With panel data, standard practice among economists is now to 

account for the potential correlation of error terms in estimation.  It ought also be standard practice to 

account for correlation induced by the sample design.  The next section discusses methods for doing so, 

and the practical difficulties in implementing these methods. 

 

5.  Variance estimators for data from complex samples 

 With data from a clustered sample, the variance-covariance matrix of the regression error  (Ω ) 

does not in general equal σ2I.  This implies that in the presence of clustering OLS is not efficient and that 

variance estimators based on the assumption of SRS are not consistent.  Economists might approach this 

problem by assuming a particular form for Ω  (such as the random effects model of (7)) and then using 

that assumption as the basis for both a more efficient estimator of β and a consistent estimator of the 

associated variance-covariance matrix.  If the implied restrictions on Ω  are valid, then this approach is 

both unbiased and efficient. Survey statisticians, in contrast to economists, are generally unwilling to 

impose additional structure on Ω .  Instead, they typically choose to forego potential efficiency gains in 

                                                                 
23 Variation in cluster size plays a role as well, because cluster size is in some cases correlated with the explanatory 
variables and as a result it affects some variances more than others. 
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exchange for the greater robustness of wgtβ̂ , and so the sampling literature concentrates instead on 

developing estimators of V( wgtβ̂ ) that account for survey sampling methods.24   

 This section of the paper describes the estimators of V( wgtβ̂ ) devised by survey statisticians, and 

then compares them with more traditional econometric variance estimators.   From a repeated sampling 

perspective, wgtβ̂  is a non-linear estimator as both X and Y vary across samples. The survey statistics 

literature has developed two general approaches to estimating the variance of a nonlinear estimator: 

“linearization" estimators, based on the variance of a linear approximation to the nonlinear estimator; and 

replication estimators, based on variation in estimates across repeated subsamples of the survey data.  

While methods of computation are quite different for the two types, in practice they have been found to 

have similar properties, so the key issue in choosing between them is generally convenience rather than 

their statistical properties.  In what follows, we describe these approaches and consider how they relate to 

methods based on a random effects model. 

 

5.1  Linearization Estimators 

Linearization estimators use the first term of a Taylor expansion to approximate a nonlinear 

estimator with a linear function of estimated (finite population) totals.  For example, the weighted sample 

mean ( NYwywy Niiiwgt
ˆˆ== ∑∑ ), can be expanded around the true finite population values to obtain 

an approximation in terms of the totals YN and N: 

).ˆ()ˆ(
1

2
NN

N

Y
YY

NN
Y

y N
NN

N
wgt −−−+≈  

This approach breaks the problem into two steps: first estimate the coefficients in the linear 

approximation, and then estimate the variance of the totals.  Techniques developed to estimate the 

variance of a total with data from complex samples thus also form the basis for linearization estimators 

                                                                 
24 We present methods for the weighted least squares estimator.  Results for the OLS estimator are simply derived 
by treating the weights as all equal to 1, but are subject to the point estimation bias issues raised in section 3. 
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for variances of regression coefficients.  As a result, a brief introduction to those techniques provides a 

useful starting point.  

 

5.1.1  Variance Estimators for Finite Population Totals 

Consider estimation of the finite population total ∑
=

=
N

i
iN YY

1
using data from a stratified clustered 

sample with unequal probabilities of selection—i.e. a sample that combines the design elements described 

in section 2.  Let H denote the number of strata, and note that the population total is simply the sum of the 

stratum totals, so ∑
=
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h
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ˆˆ  where hŶ  denotes the estimated total for stratum h.  Stratification involves 
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by estimating variances separately within each stratum and then summing.  To simplify discussion of 

estimators of )ˆ( NYV  we present estimators that would apply to data from a single stratum.   

To make the intuition clearer, think of decomposing an element’s weight, wci, as cicci www |×= , 

where wc gives the inverse of the probability that cluster c is selected, and wi|c gives the inverse of the 

probability that element i is selected given that cluster c is in the sample.  Let Bc denote the total number 

of elements in cluster c, while bc continues to denote the number selected.  Similarly, A is the total 

number of clusters, and a the number selected. The estimator for the total would then be 
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).  Suppose that the design involves a SRS of a clusters, and that all elements within sample 

clusters are included in the sample (wi|c = 1, bc =Bc ).  In this case, Yc is known with certainty for each 

cluster in the sample.  The variance of the total is then estimated as: 
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If there is subsampling within clusters (wi|hc > 1 ) the variance of the total is commonly estimated using: 
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The similarity of (10) and (11) suggests that use of the latter ignores the effects of subsampling (and, 

consequently, of any additional stages of clustering).  However, in expectation (11) exceeds (10) by a 

term that roughly equals the contribution of the within-cluster sampling design to V( NŶ ).27  Sampling 

variation in cŶ means that substitution of cŶ  for Yc increases the average size of the term in parentheses; 

the size of that increase depends on the variance of cŶ  as an estimator of Yc ; and the variance of 

cŶ depends on the within-cluster sampling design. 

 

5.1.2   Linearization Variance Estimators for Regression Coefficients 

Returning to regression, we want to approximate wgtβ̂  with a linear function of estimated (finite 

population) totals to develop a linearization variance estimator for wgtβ̂ .  To this end, consider the 

parameter vector Β  defined implicitly (as in equation (3)) by 
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25 This formula may seem more intuitive if the reader notes that when clusters are selected with SRS 
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26 This is an approximately unbiased estimator when first-stage sampling units  (clusters) are chosen with 
replacement using probability-proportional-to-size sampling.  It is more common to sample without replacement 
(because it makes estimators more efficient), but estimating variances is much simpler if samples are treated as if 
they were chosen with replacement.  This leads to an upward bias in estimating the variance, but the relative bias 
will generally be small if the first stage sampling fraction is small.  See Rao, Wu, and Yue (1992). 
27 See, for example, Wolter (1985, p. 46) and Shao (1996). 
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That is, B is defined by the least squares normal equations applied to the entire finite population.28  

Denote the left hand side of (12) as UN and note that it is a vector of finite population totals 
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ε ).  So if ε were observable (and hence Β were known) we could estimate UN using the 

sample total εε wxxwU
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and variance-covariance matrix UΣ .  

In addition, note that the estimator wgtβ̂ is the solution of the analogous estimating equation  
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applying (11) and using the regression residuals as estimates of ε .  That is: 

                                                                 
28Our exposition is based on Binder’s (1983) approach for implicitly defined estimators. His formulation applies to 
estimators with a closed form solution (such as regression coefficients) as a special case, but it  also applies to other 
models that economists commonly estimate using maximum likelihood techniques such as logit, probit and Cox 
proportional hazard models. 
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Putting these pieces together, the linearization variance estimator can also be expressed as 
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and ecj is the residual for the jth element from the cth cluster.  If w=I, this simplifies to 

11 )()()ˆ(ˆ −− ′Λ′′= xxxxxxV OLSβ .   

 

5.2 Estimators based on a random-effects model 

From an economist’s perspective the difficulty introduced by clustered sampling for the 

regression model (2) is that .)( 2IE σεε ≠Ω=′   If clusters are sampled independently, the covariance 

between observations from different clusters is zero, and the variance-covariance matrix of ε  can be 

restric ted to have the form: 
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In this case, the asymptotic variance-covariance matrix of OLSβ̂  is 11 )()()ˆ( −− ′Ω′′= xxxxxxV OLSβ .  Given 

that the number of parameters in Ω grows faster than the sample size, it is not possible to get a consistent 

estimator of Ω without assuming some parametric structure.  An economist might assume some model for 

                                                                 
29 0ˆ =u  due to the normal equations that define wgtβ̂ : .0ˆ)( =′−=′−′ wexwyxwxx wgtβ  However, with a 

stratified sample, the variance would involve a sum of H terms ∑
=

′−−
ha

c
huhcuhuhcu

1
)ˆˆ)(ˆˆ( , and the hû terms must 
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the error term that imposes restrictions on the elements of Ωc, thereby reducing the dimensions of the 

problem enough to estimate Ω based on that model.   The random-effects model of section 3 is one 

example of such a strategy. 

An alternative is to exploit the fact that estimation of )ˆ( OLSV β  does not require a consistent 

estimator for Ω, but rather only for the k-by-k  matrix xx Ω′ .  This is the approach taken by White (1980) 

in developing a heteroscedasticity-consistent estimator for )ˆ( OLSV β .  The linearization variance 

estimator uses xx Λ′ to estimate xx Ω′ , and may be viewed as an extension of the White estimator to the 

case with stratified, clustered samples.30  This is a robust estimator in the sense that consistency does not 

require any particular pattern in the correlation of residuals within a cluster, nor does it require the cΩ  to 

have the same form for different clusters. This is in contrast to the random-effects model that assumes that 

error terms are equally correlated within clusters, and that the cΩ are identical in form across clusters.31  

An added advantage of the linearization variance estimator is that it does not require modification 

for use with samples with more than one stage of clustering, whereas the standard random-effects model 

does.  To see this, consider the two stages of selection used for CPS samples.  First-stage units are either a 

county or group of counties; second-stage units are groups of approximately four contiguous housing 

units.  One would not expect the error terms of neighbors to be correlated in the same way as the error 

terms of two observations from different parts of the same county, but treating PSUs as clusters in the 

standard random effects model implicitly imposes this assumption.  Thus, adapting random-effects 

models for use with multi-stage clustered data would require going beyond the simple model that 

statistical packages readily estimate.  The linearization estimator does not assume any particular pattern of 

correlations between observations within a first-stage cluster, and so can be used without modification. 

 

                                                                                                                                                                                                                 
be retained because they will not in general equal 0. 
30 This estimator is also known as the Huber-White, sandwich, or robust estimator in other strands of the statistical 
literature.  See, for example Carroll and Ruppert (1988) and Diggle, Liang, and Zeger (1994). 
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5.3 Replication methods 

 While the linearization approach has a wide variety of applications, it does require one to derive 

and program a separate set of partial derivatives for each nonlinear estimator.  Replication (or resampling) 

methods provide an alternative—they require greater computational resources, but less estimator-specific 

derivation.  Comparisons of the performance of the linearization estimator and the two replication 

methods discussed here (the jackknife and balanced repeated replication) have generally found them to 

have similar properties.32  

The general idea of replication methods is to draw repeated subsets of the sample, calculate the 

estimator for each subset, and then estimate the variance based on how much the estimates vary over the 

repeated subsamples.  The drawing of subsamples differs across replication methods, but for each method 

subsamples are chosen to preserve the design of the overall sample.  For clustered designs, that means 

that a subsample either includes all sample members from a cluster or it excludes all of them. 

The most common techniques are known as the ‘jackknife’ and ‘balanced repeated replication’ or 

BRR.  BRR is a more specialized procedure than the jackknife in that it is designed for samples in which 

two clusters are drawn from each stratum.33  This is a very common design for clustered samples, and the 

most common alternative—one cluster per stratum—is also usually treated as if it were a two cluster per 

stratum design.34  However, the jackknife is applicable to a wider variety of sample designs.  In the two-

cluster-per-stratum case, properties of the two methods (and their many variants) have been found to be 

similar to each other and to the linearization estimator, so the choice between them should depend more 

on how difficult they are to implement than on statistical considerations.35 

                                                                                                                                                                                                                 
31 Consistency of the linearization estimator does require that increases in sample size take the form of more clusters 
rather than of increases in the number of elements selected per cluster. 
32 Rust (1985) provides a survey of both empirical and theoretical comparisons. 
33 BRR has been extended to cases with more than two PSUs per stratum.  Grouped BRR involves simp ly 
combining PSUs within stratum into two groups, and then carrying out BRR as if each group were a single PSU.  
There are other more complicated ways of adapting BRR, but these are little used in practice. 
34 This is done by pairing strata and treating the combined strata as if they were one. 
35 See Rao, Wu, and Yue (1992) for a brief discussion.  Rao and Wu (1985) compare the properties of these 
estimators. 
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For jackknife variance estimators, subsamples are formed by dropping the data from a single 

cluster in turn, and using the remaining data to form an estimate.   The variance of an 

estimator θ̂would then be estimated using:  

2*

1 1
)( )ˆˆ(

1
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= =
−

−
=

H

h

a

c
hc

h

h h

a
a

V ,     

where )(̂hcθ is the estimate based on the subsample that excludes cluster c in stratum h, and *θ̂  is a point 

estimator of θ  that uses data from all clusters.  In the most common version of the jackknife, θθ ˆˆ* = —

the estimator based on the entire sample—but there are other variants.  

With BRR, replicate half-samples are selected by dropping the data from H clusters, one in each 

stratum, and calculating )(
ˆ

rθ  based on the remaining half-sample of H clusters.  One could construct up to 

2H different half-samples with a two-PSU-per-stratum design and H strata, but BRR involves choosing 

‘balanced’ half-samples to reduce the number of replicates needed to approximately H.36 The variance can 

be estimated using: 

2*
)(

1

)ˆˆ(
1

)ˆ(ˆ θθθ −= ∑
=

r

R

rR
V , 

where R is the number of replicates, though there are several variants on this.  As for the jackknife, most 

commonly θθ ˆˆ* =  based on the full sample, but there are other variants. 

 Table 5 applies these alternative variance estimators to the human capital earnings functions of 

our earlier examples.  Column (1) reports weighted least squares coefficient estimates and column (2) 

reports estimates of the associated standard errors base on the assumption of IID errors.  The remaining 

three columns report standard errors produced by the linearization method (column 3) and two replication 

methods (columns 4 and 5).  The results illustrate that the design-based methods used in the last three 

                                                                 
36 The balanced half-samples are defined using an R-by-R Hadamard matrix—a k  by k  matrix whose elements are 
each either +1 or –1and which satisfies kIHH =′ , with k=1, 2, or a multiple of 4.  Replicate r is formed by 

choosing the first PSU in stratum h when H[h,r]=+1, and the second PSU in that stratum when H[h,r]=-1.  )(
ˆ

rθ  is 
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columns yield very similar standard error estimates in these data.  The design-based estimates are fairly 

close to the IID estimates of column (2) for most variables, but the IID estimates are much smaller for the 

MSA dummy.  As before, the MSA dummy is particularly sensitive to clustering because it typically does 

not vary at all within clusters.  Table 5 suggests that it is important to account for the survey design in 

estimating standard errors, but that the choice between alternative methods is of second order importance.  

This view is supported by the related statistical literature. 

 

5.4 Practical considerations 

 Public-use files almost universally include survey weights, so the information required to account 

for varying probabilities of selection is readily available.  Accounting for stratification and clustering 

requires access to variables that group observations into strata and clusters—information which may or 

may not be available to the public user.  Because this information potentially identifies small geographic 

areas, it is sometimes suppressed in creating public -use files for household surveys out of concern that, in 

combination with demographic information, it might compromise respondent confidentiality.  As a 

compromise, many surveys now provide enough information on public-use files to at least approximate 

design effects.37  In addition, several federal statistical agencies have instituted programs that allow 

economists to have restricted access to non-public-use databases that include stratum and cluster 

identifiers.   

 Until recently, econometric software packages did not include procedures meant to handle survey 

data, but this has also begun to change.  Procedures for regression and relatively simple non-linear 

                                                                                                                                                                                                                 

formed by doubling all of the weights, and then applying estimator θ̂  to the half-sample. R is the smallest multiple 
of four such that the number of strata is less than or equal to R ).3( +≤≤ HRH   
37 For example, the PSID, the National Health Interview Survey, and the Health and Retirement Survey each provide 
users with variables that can be used to group observations into something approximating strata and PSUs for the 
purpose of computing standard errors.  The restricted-release Geocode version of the NLSY79 also provides such 
codes.   The CPS does not provide such codes on public-use files. 
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estimators (e.g. logit and proportional hazard models) are now included in several widely used 

packages.38 

 

6.   Conclusions  

 Survey data are a staple of econometric analysis, but economists are often only vaguely familiar 

with how survey samples are designed.  This is unfortunate, as in some cases the failure to account for a 

survey’s design and implementation can result in inference procedures that are quite inaccurate.  To 

summarize, failure to account for unequal probabilities of selection can lead standard point estimators to 

be biased, and failure to account for clustering can lead to severely understated variance estimates.  Put 

together, the failure to account for survey design can lead to inaccurate inferences being drawn from 

survey data.   

There is an increased sensitivity to the effects of survey design on inference within the 

econometrics community, as is evident from the large number of recent empirical papers that report 

accounting for survey design effects, and from the small but growing econometric literature on the effects 

of survey design (e.g., Wooldridge, 1998 and 1999; Imbens and Lancaster, 1996; Hellerstein and Imbens, 

1999).  We hope that this paper serves as a useful introduction to the issues involved, and as a practical 

introduction to the choices that applied economists need to make when they use survey data.

                                                                 
38 www.fas.harvard.edu/~stats/survey-soft/survey-soft.html maintains a list of software packages that include 
design-based estimators. 
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Table 1: OLS and Design-Based Estimates of Log Wage Regression 
 
 
 
 
Independent Variable  

 
(1) 

 
OLS/IID  
Estimates 

 
(2) 

 
Design-based  

Estimates 
 
Black 

 
-.063 
(.014) 

 
-.102 
(.017) 

Hispanic -.048 
(.012) 

-.080 
(.015) 

Female -.313 
(.008) 

-.303 
(.009) 

Age  .0092 
(.0004) 

 .0097 
(.0005) 

Years of schooling  .0972 
(.0015) 

 .0984 
(.0018) 

Intercept  .866 
(.028) 

 .845 
(.035) 

 
 

Notes:  The dependent variable is the log of average hourly earnings.  Data are from the 
March 1997 CPS.  Standard errors are in parentheses. 
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Table 2: Design Variables for Selected Large U.S. Surveys  
(1) 

Stratification 
(2) 

Probabilities of selection 
(3) 

Nonresponse adjustments 
(4) 

Poststratification 
(5) 

Clustering 
A. Surveys of households  

1. Current Population Survey:  Measures national and state unemployment rates. 
             Geographic areas (PSUs) 

stratified by state, number 
of unemployed by gender, 
number of female-headed 
families, fraction of 
housing units with >=3 
persons, employment and 
wages by industry from 
BLS 

 

State, Hispanic status of 
dwelling unit in earlier 
rotation group (March 
only) 

State, MSA status and 
size, central city/not 
central city or rural/ 
nonrural 

Black/non-black census 
population within state 
(for non-self-
representing PSUs 
only);  national age/sex 
/race and age/sex/ 
Hispanic population; 
state population 

(1) County or county 
group; (2) groups of about 
4 dwelling units.  One 
cluster selected per 
noncertainty stratum. 

2.  National Longitudinal Survey of Youth, 1979:  Measures youth labor market dynamics by race, income status, sex. 
Geographic areas (PSUs) 
stratified by region, 
SMSA status, county size, 
percent black, median 
family income 

Race of youth and 1977-
78 family income as 
reported in screener; 
characteristics of 3rd stage 
unit of selection (see last 
column): percent black, 
percent Hispanic, percent 
low income 
 

Completion rate in 3rd 
stage sampling unit for 
screening interview; 
whether complete income 
information given in 
screener; race/ethnicity, 
sex, and birth year within 
PSU 
 

Population by 
race/ethnicity, sex, and 
birth year based on 
Census Bureau 
estimates. 

(1) County or county 
group; (2) block group or 
enumeration district; (3) 
small area with 100+  
dwelling units.  One 
cluster selected per 
noncertainty stratum. 

3.  Health and Retirement Survey:  Measures dynamics of retirement and aging. 
Geographic areas (PSUs) 
stratified by MSA status, 
population of area, 
geographic location 

Racial/ethnic 
composition of area, 
marital status, number of 
age-eligible persons in 
household, age, Florida 

PSU, racial/ethnic 
composition of 
neighborhood (within 
PSU) 

Number of households 
by region by race by 
marital status; 
population by region by 
race/ethnicity by sex by 
age group 

(1) MSA, county or 
county group; (2) blocks 
or block groups.  One 
cluster selected per 
noncertainty stratum. 
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Table 2: Design Variables for Selected Large U.S. Surveys (Continued) 
(1) 

Stratification 
(2) 

Probabilities of Selection 
(3) 

Nonresponse adjustments 
(4)  

Poststratification 
(5) 

Clustering 
 

B. Surveys of establishments 
1.  Annual Survey of Manufacturers: Measures shipments, etc. by industry, and for industry by state. 

Industry  Value and time-series 
variability of product 
class shipments 
 

No adjustment made to 
weights—use imputation 
to adjust for nonresponse 

No adjustment of weights, 
but published estimates 
include an adjustment equal 
to difference (in census 
year) between ASM and 
Census of Manufactures 
estimates 

No clustering of 
establishments, but if 
product line is unit of 
analysis, cluster= 
establishment 

2.  Medical Expenditure Panel Survey IC:  Measures % of establishments offering health insurance, % of workers covered, by state. 
State; firm and 
establishment size 

State; firm and 
establishment size; 
number of establishments 
in firm 

Whether establishment 
was known to offer 
insurance; industry; 
single vs. multiunit; state; 
firm and establishment 
size 
 

Employment by (state by 
firm size by establishment 
size) from Census Bureau’s 
business list 

No clustering of 
establishments, but if 
health plan is unit of 
analysis, cluster= 
establishment  

3.  Employer Cost Index:  Provides basis for index of changes in employee compensation for a fixed bundle of jobs. 

Industry Establishment and 
occupational employment 

Industry and 
establishment size 

Weights not adjusted but 
published estimates of 
compensation levels 
poststratified to 
employment counts by 
industry from Current 
Employment Statistics 
survey 

No clustering of 
establishments, but if 
occupation is unit of 
analysis, cluster= 
establishment 

Notes: The NLSY79 includes an equal-probability-of-selection component of the sample, along with other subsamples that oversample certain 
populations.  The description of variables determining probabilities of selection for the NLSY79 pertain to the sample as a whole, or to the special 
subsamples.  Descriptions of variables used for nonresponse adjustments do not include all adjustments for attrition in panel surveys.
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Table 3: Effects of Weighting When Controlling for Design Variables 

 Main Design Variables NOT 
Included on Right-Hand Side 

Main Design Variables ARE 
Included on Right-Hand Side 

 (1) 
Unweighted 

(2) 
Weighted 

(3) 
Unweighted 

(4) 
Weighted 

1. Black -.063 
(.014) 

-.102 
(.017) 

-.111 
(.014) 

-.120 
(.017) 

2. Hispanic  
 

-.049 
(.012) 

-.080 
(.015) 

-.090 
(.013) 

-.112 
(.016) 

3. Female  -.313 
(.008) 

-.303 
(.009) 

-.311 
(.008) 

-.301 
(.009) 

4. Age .0092 
(.0005) 

.0097 
(.0005) 

.0091 
(.0005) 

.0096 
(.0005) 

5. Years of schooling .097 
(.0017) 

.098 
(.0018) 

.094 
(.0016) 

.096 
(.0018) 

6. State dummies? No No Yes Yes 
 
Notes: Data come from the March 1997 CPS. The first two columns of estimates are repeated  
from Table 1, except that standard error estimates account for stratification and clustering in all  
columns. 
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Table 4: Examples of Misspecification Effects From a Log Wage Regression 

 
 
 
Independent variables 

 
 

(1) 
 
xρ̂  

 

 
(2) 

 
Misspecification factor 

based on random 
components model 

 
(3) 

 
Misspecification factor 

based on 
linearization estimator 

CPS, March 1997:  ερ̂ =.020 
   Female -.010 1.00 1.07 
   Age  .018 1.01 1.14 
   Years of schooling  .061 1.04 1.10 
   Black  .128 1.18 0.94 
   Hispanic .247 1.49 1.04 
   MSA .981 1.49 1.24 

NLSY79:  ερ̂ =.046 
   Female .001 1.00 0.85 
   Age .011 1.01 1.01 
   Years of schooling .074 1.05 1.05 
   Black .548 1.47 1.13 
   Hispanic .541 1.44 1.56 
   MSA .420 1.32 1.28 

 Notes:  Column 2 gives the square root of the diagonal elements of ερ)( II −Λ+ , as defined in text.  In 
the CPS, sample PSUs have on average 47.3 persons in the regression sample.  In the NLSY79, sample 
PSUs have on average 45.5 persons in the regression sample.  Column 3 gives the ratio of linearization 
standard errors to standard errors based on the estimator 21 ˆ)( σ−′XX .  Noncertainty strata were paired up 
to approximate a 2-PSU-per-stratum design. 



Table 5:  Alternative Design-Based Standard Error Estimates 
 

 
 
 

 
 Alternative Estimates of Standard Errors 

 
 
 
 
 
Independent 
variables 

 
(1) 

 
Coefficients 

 

 
(2) 

 
IID 

 

 
(3) 

 
Linearization 

 
(4) 

 
BRR 

 
(5) 

 
Jackknife 

CPS, March 1997     
   Female  -.301   .00774 .00863 .00865 .00863 
   Age .0098 .00042 .00054 .00054 .00054 
   Years of 
schooling 

.0933 .00150 .00159 .00160 .00159 

   Black -.126 .01243 .01648 .01654 .01649 
   Hispanic -.122 .01388 .01433 .01423 .01433 
   MSA  .256 .01012 .01319 .01328 .01317 

NLSY79,  1994 Wave 

  

   Female -.288 .01353 .01656 .01671 .01665 
   Age  .017 .00290 .00370 .00375 .00371 
   Years of 
schooling 

 .088 .00262 .00393 .00395 .00394 

   Black -.170 .02259 .02339 .02355 .02354 
   Hispanic -.021 .03286 .02754 .02805 .02730 
   MSA  .231 .01648 .02986 .03018 .03013 
 

Notes:  For the CPS, the 531 strata used in earlier tables are grouped into 100 grouped-strata to 
accommodate constraints in the software we used to estimate the BRR and jackknife standard 
errors. 

 
 


